
EXAMPLE ATTACK DOCUMENTATION

Touch Screen Window Manager
Douglas W. Jones

Sept 26, 2005

Taxonomy: wholesale third-party firmware
Applicability: touch-screen voting systems using window managers

Method:
 Many DRE voting systems use a window manager, frequently
from Microsoft, but some open voting products will use the X window
manager. On such systems, all display of text on the screen and
interpretation of touches on the screen are generally done through
window-manager routines. In many cases, the window manager is
considered to be an industry-standard commercial off-the-shelf
component, and is therefore subject to reduced scrutiny.
 If the perpetrator can add code to the window manager, the
behavior of the voting system can be modified in a way that alters the
election outcome. For example, consider this attack that will favor
candidates from the aaa party in states allowing straight party voting
where the bbb party is the other major party and the ccc party is a
strong third party:
 Insert in the window manager code to detect that the current
window includes the text "straight party", and that it includes the text
"aaa", "bbb" and "ccc" in the same window. The window manager is
programmed to misbehave whenever this combination is present in
the window, but only on the first Tuesday after the first Monday of
November, only when this window has been used at least 20 times,
and only when the machine has been turned on for over 4 hours. The
misbehavior is to misreport all touches in the vicinity of the text "ccc"
as being in the vicinity of "aaa", thus stealing straight-party votes from
the third party and giving them to the major party.
 The code for this attack should of course be obfuscated, with
misleading comments and carefully hidden function so that it evades
the internal quality control checks of the software vendor. The art of
obfuscated programming has been thoroughly explored.
 There are, of course, many variations on this attack, some of
which do not depend on the straight party option. For example, the
attack can be limited to an office or it can apply broadly, throwing,

say, 10% of the third party vote to the favored party in all races.

 Resource requirements: The perpetrator must have access to the
source code of the window manager.

Potential gain:
 The target should be around 1/3 of the straight party votes for a
major third party. In the past 50 years, third parties have rarely
earned over 5% of the vote, but sometimes up to 15% (George
Wallace in 1968). The fraction of straight-party voters is hard to
determine, but it will be significant only for parties that put up
candidates for many different offices. In recent years, only the Greens
and the Libertarians have managed this, so these are the natural third
parties to attack. As a naive guess, it is unlikely that this attack would
win more than 1% of the vote.

Likelihood of detection:
 Because the attack code is embedded in third-party off-the-shelf
software, it is unlikely to be subject to the same scrutiny as purpose-
written voting code. Because it only manifests itself under conditions
typical of real elections, it is unlikely to be seen in any testing by the
commercial off-the-shelf vendor. The checks sensitive to the number
of votes cast and the length of time the machine has been running will
evade many pre-election tests and possibly even many ITA tests.
Small additions to the conditions suggested above can make it evade
ITA testing.
 If a voter does notice that their vote was cast for the wrong
candidate (and there are variations of this attack that evade detection
by the voter) the problem can easily be blamed on the voter (you
simply touched the wrong point on the screen) or on touch screen
alignment.
 Because the attack code is modest, stealing only a small fraction
of the votes cast, it is unlikely to show up in post election audits.

Countermeasures:
 Preventative measures:

 Eliminate testing and source code inspection exemptions for
inspection of third-party commercial off-the-shelf software.
 Eliminate testing and source code inspection exemptions for
emergency patches and bug fixes.

 Eliminate dependencies on window-manager functionality from
the voting application. Typically, this will involve "flattening" the code
to eliminate deep hierarchies of reusable software components.
Instead, the voting application should directly manipulate the display
screen.
 Eliminate text from the voting application. Instead, display all
ballot content on the screen as images, with extremely dumb image
display software used to place all voting-related text on the screen. It
would be helpful if there were a guarantee that the system contained
no OCR software that could examine images to detect embedded text
(such software is becoming increasingly widely available as a software
component and may soon become a standard off-the-shelf component
for other software systems).
 Eliminate access to the real-time clock, or alternatively, strictly
audit all use of the real-time clock so that no use of the date, the time
of day or the time since power-up is permitted except for the purpose
of logging events in the system event log.

 Detection measures:
 Take voter complaints of the form "I voted straight party ccc and
it marked the aaa candidate" very seriously. Unfortunately, variations
on this attack may be invisible to the voter.
 Perform parallel testing on election day, with a test environment
that the machine cannot possibly distinguish from real use. The
machine should be turned on at and off at reasonable times for polling
places to be opened and closed, the number of votes should be typical
of a busy polling place,

Citations:
 The Fidlar and Chambers EV 2000 was accidentally "attacked" by
Microsoft following a distant relative of this scenario in January 1998.
The "attack" was a cosmetic change that involved no change to the
Windows applications programmer interface (API) and was therefore
determined exempt from testing by the ITA. Unfortunately, this
cosmetic change ended up revealing, to each voter, all votes cast by
the previous voter to use that machine. I described this to the House
Science Committee on May 22, 2001. See
http://www.cs.uiowa.edu/~jones/voting/congress.html
 That accidental attack led me to propose this attack in E-Voting --
Prospects and Problems, April 13, 2000. Available on-line at
http://www.cs.uiowa.edu/~jones/voting/taubate.html

Retrospective:
 The problem posed by emergency security patches from vendors
is extremely serious. These come with a built-in urgency that is
immense. We are training a generation of computer system
administrators to install such patches immediately and without
question. It is not clear that this is prudent except when we know,
with a great degree of certainty, that the vendors software
development procedures conform to the same standards as our
application.

